
6 Network Flow

1. Suppose you are given a directed graph G = (V,E), with a positive integer capacity ce
on each edge e, a designated source s ∈ V , and a designated sink t ∈ V . You are also
given a maximum s-t flow in G, defined by a flow value fe on each edge e. The flow
{fe} is acyclic: there is no cycle in G on which all edges carry positive flow.

Now, suppose we pick a specific edge e∗ ∈ E and reduce its capacity by 1 unit. Show
how to find a maximum flow in the resulting capacitated graph in time O(m), where
m is the number of edges in G.

2. Consider the following problem. You are given a flow network with unit-capacity edges:
it consists of a directed graph G = (V,E), a source s ∈ V , and a sink t ∈ V ; and ce = 1
for every e ∈ E. You are also given a parameter k.

The goal is delete k edges so as to reduce the maxmimum s-t flow in G by as much as
possible. In other words, you should find a set of edges F ⊆ E so that |F | = k and the
maximum s-t flow in G′ = (V,E − F) is as small as possible subject to this.

Give a polynomial-time algorithm to solve this problem.

Solution. If the minimum s-t cut has size ≤ k, then we can reduce the flow to 0.
Otherwise, let f > k be the value of the maximum s-t flow. We identify a minimum s-t
cut (A,B), and delete k of the edges out of A. The resulting subgraph has a maximum
flow value of at most f − k.

But we claim that for any set of edges F of size k, the subgraph G′ = (V,E − F) has
an s-t flow of value at least f − k. Indeed, consider any cut (A,B) of G′. There are
at least f edges out of A in G, and at most k have been deleted, so there are at least
f − k edges out of A in G′. Thus, the minimum cut in G′ has value at least f − k, and
so there is a flow of at least this value.

74

3. Suppose you’re looking at a flow network G with source s and sink t, and you want to
be able to express something like the following intuitive notion: some nodes are clearly
on the “source side” of the main bottlenecks; some nodes are clearly on the “sink side”
of the main bottlenecks; and some nodes are in the middle. However, G can have many
minimum cuts, so we have to be careful in how we try making this idea precise.

Here’s one way to divide the nodes of G into three categories of this sort.

• We say a node v is upstream if for all minimum s-t cuts (A,B), we have v ∈ A —
that is, v lies on the source side of every minimum cut.

• We say a node v is downstream if for all minimum s-t cuts (A,B), we have v ∈ B
— that is, v lies on the sink side of every minimum cut.

• We say a node v is central if it is neither upstream nor downstream; there is at
least one minimum s-t cut (A,B) for which v ∈ A, and at least one minimum s-t
cut (A′, B′) for which v ∈ B′.

Give an algorithm that takes a flow network G, and classifies each of its nodes as
being upstream, downstream, or central. The running time of your algorithm should
be within in a constant factor of the time required to compute a single maximum flow.

Solution. Consider the cut (A∗, B∗) found by performing breadth-first search on the
residual graph Gf at the end of any maximum flow algorithm. We claim that a node
v is upstream if and only if v ∈ A∗. Clearly, if v is upstream, then it must belong to
A∗; since otherwise, it lies on the sink-side of the minimum cut (A∗, B∗). Conversely,
suppose v ∈ A∗ were not upstream. Then there would be a minimum cut (A′, B′) with
v ∈ B′. Now, since v ∈ A∗, there is a path P in Gf from s to v. Since v ∈ B′, this
path must have an edge (u,w) with u ∈ A′ and w′ ∈ B′. But this is a contradiction,
since no edge in the residual graph can go from the source side to the sink side of any
minimum cut.

A completely symmetric argument shows the following. Let B∗ denote the nodes that
can reach t in Gf , and let A∗ = V −B∗. Then (A∗, B∗) is a minimum cut, and a node
w is downstream if and only if w ∈ B∗.
Thus, our algorithm is to compute a maximum flow f , build Gf , and use breadth-first
search to find the sets A∗ and B∗. These are the upstream and downstream nodes
respectively; the remaining nodes are central.

4. Let G = (V,E) be a directed graph, with source s ∈ V , sink t ∈ V , and non-negative
edge capacities {ce}. Give a polynomial time algorithm to decide whether G has a
unique minimum s-t cut. (I.e. an s-t of capacity strictly less than that of all other s-t
cuts.)

5. In a standard minimum s-t cut problem, we assume that all capacities are non-negative;
allowing an arbitrary set of positive and negative capacities results in an NP-complete
problem. (You don’t have to prove this.) However, as we’ll see here, it is possible

75

to relax the non-negativity requirement a little, and still have a problem that can be
solved in polynomial time.

Let G = (V,E) be a directed graph, with source s ∈ V , sink t ∈ V , and edge capacities
{ce}. Suppose that for every edge e that has neither s nor t as an endpoint, we have
ce ≥ 0. Thus, ce can be negative for edges e that have at least one end equal to either
s or t. Give a polynomial-time algorithm to find an s-t cut of minimum value in such
a graph. (Despite the new non-negativity requirements, we still define the value of an
s-t cut (A,B) to be the sum of the capacities of all edges e for which the tail of e is in
A and the head of e is in B.)

6. Let M be an n× n matrix with each entry equal to either 0 or 1. Let mij denote the
entry in row i and column j. A diagonal entry is one of the form mii for some i.

Swapping rows i and j of the matrix M denotes the following action: we swap the
values mik and mjk for k = 1, 2, . . . , n. Swapping two columns is defined analogously.

We say that M is re-arrangeable if it is possible to swap some of the pairs of rows and
some of the pairs of columns (in any sequence) so that after all the swapping, all the
diagonal entries of M are equal to 1.

(a) Give an example of a matrix M which is not re-arrangeable, but for which at least
one entry in each row and each column is equal to 1.

(b) Give a polynomial-time algorithm that determines whether a matrix M with 0-1
entries, is re-arrangeable.

7. You’re helping to organize a class on campus that has decided to give all its students
wireless laptops for the semester. Thus, there is a collection of n wireless laptops; there
is also have a collection of n wireless access points, to which a laptop can connect when
it is in range.

The laptops are currently scattered across campus; laptop ` is within range of a set S`

of access points. We will assume that each laptop is within range of at least one access
point (so the sets S` are non-empty); we will also assume that every access point p has
at least one laptop within range of it.

To make sure that all the wireless connectivity software is working correctly, you need
to try having laptops make contact with access points, in such a way that each laptop
and each access point is involved in at least one connection. Thus, we will say that a
test set T is a collection of ordered pairs of the form (`, p), for a laptop ` and access
point p, with the properties that

(i) If (`, p) ∈ T , then ` is within range of p. (I.e. p ∈ S`).

(ii) Each laptop appears in at least one ordered pair in T .

(iii) Each access point appears in at least one ordered pair in T .

76

This way, by trying out all the connections specified by the pairs in T , we can be sure
that each laptop and each access point have correctly functioning software.

The problem is: Given the sets S` for each laptop (i.e. which laptops are within range
of which access points), and a number k, decide whether there is a test set of size at
most k.

Example: Suppose that n = 3; laptop 1 is within range of access points 1 and 2;
laptop 2 is within range of access point 2; and laptop 3 is within range of access points
2 and 3. Then the set of pairs

(laptop 1, access point 1), (laptop 2, access point 2),
(laptop 3, access point 3)

would form a test set of size three.

(a) Give an example of an instance of this problem for which there is no test set of
size n. (Recall that we assume each laptop is within range of at least one access point,
and each access point p has at least one laptop within range of it.)

(b) Give a polynomial-time algorithm that takes the input to an instance of this
problem (including the parameter k), and decides whether there is a test set of size at
most k.

8. Back in the euphoric early days of the Web, people liked to claim that much of the
enormous potential in a company like Yahoo! was in the “eyeballs” — the simple
fact that it gets millions of people looking at its pages every day. And further, by
convincing people to register personal data with the site, it can show each user an
extremely targeted advertisement whenever he or she visits the site, in a way that
TV networks or magazines couldn’t hope to match. So if the user has told Yahoo!
that they’re a 20-year old computer science major from Cornell University, the site
can throw up a banner ad for apartments in Ithaca, NY; on the other hand, if they’re
a 50-year-old investment banker from Greenwich, Connecticut, the site can display a
banner ad pitching Lincoln Town Cars instead.

But deciding on which ads to show to which people involves some serious computation
behind the scenes. Suppose that the managers of a popular Web site have identified
k distinct demographic groups G1, G2, . . . , Gk. (These groups can overlap; for example
G1 can be equal to all residents of New York State, and G2 can be equal to all people
with a degree in computer science.) The site has contracts with m different advertisers,
to show a certain number of copies of their ads to users of the site. Here’s what the
contract with the ith advertiser looks like:

77

• For a subset Xi ⊆ {G1, . . . , Gk} of the demographic groups, advertiser i wants its
ads shown only to users who belong to at least one of the demographic groups in
the set Xi.

• For a number ri, advertiser i wants its ads shown to at least ri users each minute.

Now, consider the problem of designing a good advertising policy — a way to show
a single ad to each user of the site. Suppose at a given minute, there are n users
visiting the site. Because we have registration information on each of these users, we
know that user j (for j = 1, 2, . . . , n) belongs to a subset Uj ⊆ {G1, . . . , Gk} of the
demographic groups. The problem is: is there a way to show a single ad to each user
so that the site’s contracts with each of the m advertisers is satisfied for this minute?
(That is, for each i = 1, 2, . . . ,m, at least ri of the n users, each belonging to at least
one demographic group in Xi, are shown an ad provided by advertiser i.)

Give an efficient algorithm to decide if this is possible, and if so, to actually choose an
ad to show each user.

Solution. We define a flow network G = (V,E) as follows.

• There is a source s, vertices v1, . . . , vn for each person vertices w1, . . . , wm for each
advertiser, and sink t.

• There is an edge of capacity 1 from vi to each wj for which person i belongs to a
demographic group that advertiser j wants to target.

• There is an edge with a capacity of 1 from s to each vi; and for each j, there is
an edge with lower bound rj from wj to t.

• Finally, the source has a demand of −∑j rj, and the sink has a demand of
∑

j rj.
All other nodes have demand 0.

Now, if there is a valid circulation in this graph, then there is an integer circulation.
In such a circulation, one unit of flow on the edge (vi, wj) means that we show an ad
from advertiser j to person i. With this meaning, each advertiser shows their required
number of ads to the appropriate people.

Conversely, if there is a way to satisfy all the advertising contracts, then we can con-
struct a valid circulation as follows. We place a unit of flow on each edge (vi, wj) for
which i is shown an ad from advertiser j; we put a flow on the edge (wj, t) equal to the
number of ads shown from advertiser j; and we put a unit of flow on each edge (s, vi)
for which person i sees an ad.

Thus, there is a valid circulation in this graph if and only if there is a way to satisfy
all the advertising contracts; and the flow values in an integer-valued circulation can
be used, as above, to decide which ads to show to which people.

9. Some of your friends have recently graduated and started a small company called
WebExodus, which they are currently running out of their parents’ garages in Santa

78

Clara. They’re in the process of porting all their software from an old system to a new,
revved-up system; and they’re facing the following problem.

They have a collection of n software applications, {1, 2, . . . , n}, running on their old
system; and they’d like to port some of these to the new system. If they move applica-
tion i to the new system, they expect a net (monetary) benefit of bi ≥ 0. The different
software applications interact with one another; if applications i and j have extensive
interaction, then the company will incur an expense if they move one of i or j to the
new system but not both — let’s denote this expense by xij ≥ 0.

So if the situation were really this simple, your friends would just port all n applications,
achieving a total benefit of

∑
i bi. Unfortunately, there’s a problem . . .

Due to small but fundamental incompatibilities between the two systems, there’s no
way to port application 1 to the new system; it will have to remain on the old system.
Nevertheless, it might still pay off to port some of the other applications, accruing the
associated benefit and incurring the expense of the interaction between applications
on different systems.

So this is the question they pose to you: which of the remaining applications, if any,
should be moved? Give a polynomial-time algorithm to find a set S ⊆ {2, 3, . . . , n} for
which the sum of the benefits minus the expenses of moving the applications in S to
the new system is maximized.

Solution. We define a directed graph G = (V,E) with nodes s, v1, v2, . . . , vn, where
our sink t will correspond to v1. Define an edge (s, vi) of capacity bi, and edges (vi, vj)
and (vj, vi) of capacity pij for each pij > 0. Define B =

∑
i bi. Now, let (X, Y) be the

minimum s-v1 cut in G. The capacity of (X, Y) is

c(X, Y) =
∑
i∈Y

bi +
∑

i∈X,j∈Y
pij

= B −
∑
i∈X

bi +
∑

i∈X,j∈Y
pij

Thus, finding a cut of minimum capacity is the same as finding a set X maximizing∑
i∈X bi −

∑
i∈X,j 6∈X pij.

10. Consider a variation on the previous problem. In the new scenario, any application can
potentially be moved, but now some of the benefits bi for moving to the new system
are in fact negative: if bi < 0, then it is preferable (by an amount quantifed in bi)
to keep i on the old system. Again, give a polynomial-time algorithm to find a set
S ⊆ {1, 2, . . . , n} for which the sum of the benefits minus the expenses of moving the
applications in S to the new system is maximized.

Solution. Choose a number r larger than any |bi|, and say that the scaled benefit bi0
of keeping application i on the old system is bi0 = r, while the scaled benefit of moving
it is bi1 = r + bi. So our problem is equivalent to that of finding a partition of the

79

applications that maximizes the sum of the scaled benefits minus the sum of pij for all
pairs i and j that are split.

Define a directed graph G = (V,E) with nodes s, t, v1, v2, . . . , vn, edges (s, vi), (vi, s)
of capacity bi0, (t, vi), (vi, t) of capacity bi1, and (vi, vj), (vj, vi) of capacity pij. Let
B =

∑
i(bi0 + bi1). Now, the capacity of an s-t cut (X, Y) can be written as

c(X, Y) =
∑
i 6∈X

bi0 +
∑
i 6∈Y

bi1 +
∑

i∈X,j∈Y
pij

= B −
∑
i∈X

bi0 −
∑
i∈Y

bi1 +
∑

i∈X,j∈Y
pij

Thus, finding a cut of minimum capacity is the same as maximizing the objective
function in the previous paragraph.

11. Consider the following definition. We are given a set of n countries that are engaged in
trade with one another. For each country i, we have the value si of its budget surplus;
this number may be positive or negative, with a negative number indicating a deficit.
For each pair of countries i, j, we have the total value eij of all exports from i to j; this
number is always non-negative. We say that a subset S of the countries is free-standing
if the sum of the budget surpluses of the countries in S, minus the total value of all
exports from countries in S to countries not in S, is non-negative.

Give a polynomial-time algorithm that takes this data for a set of n countries, and
decides whether it contains a non-empty free-standing subset that is not equal to the
full set.

Solution. We define the following flow network. There will be a node vi for each
country i, plus a source s and sink t. For each pair of nodes (vi, vj) with eij > 0, we
include an edge of capacity eij. For each node vi with si > 0, we include an edge (s, vi)
of capacity si and for each node vi with si < 0, we include an edge (vi, t) of capacity
−si. Let

N =
∑

i:si>0

si.

Now, consider an s-t cut (A,B), and write S = A − {s}, T = B − {t}. This cut’s
capacity is

c(A,B) =
∑

i∈T,si>0

si +
∑

i∈S,si<0

−si +
∑

i∈S,j∈T
eij

= N −
∑

i∈S,si>0

si −
∑

i∈S,si<0

si +
∑

i∈S,j∈T
eij

= N −

∑
i∈S

si −
∑

i∈S,j∈T
eij

 .
The last expression inside parentheses is precisely what is specified in the definition of
free-standing.

80

Thus, there is a non-empty free-standing set if and only if there is a minimum s-t cut
(A,B) in which the capacity is at most N and in which A contains at least one node
other than s. (This latter part is crucial since otherwise we end up with an empty
free-standing set S.) Hence, we need to be able to check whether ({s}, V −{s}) is the
unique minimum cut. One can verify that this holds if and only if all nodes other than
s have a path to t in the residual graph at the end of the Ford-Fulkerson algorithm.

12. (∗) In sociology, one often studies a graph G in which nodes represent people, and
edges represent those who are friends with each other. Let’s assume for purposes of
this question that friendship is symmetric, so we can consider an undirected graph.

Now, suppose we want to study this graph G, looking for a “close-knit” group of people.
One way to formalize this notion would be as follows. For a subset S of nodes let e(S)
denote the number of edges in S, i.e., the number of edges that have both ends in S.
We define the cohesiveness of S as e(S)/|S|. A natural thing to search for would be
the set S of people achieving the maximum cohesiveness.

(a.) Give a polynomial time algorithm that takes a rational number α and determines
whether there exists a set S with cohesiveness at least α.

(b.) Give a polynomial time algorithm to find a set S of nodes with maximum cohe-
siveness

Solution. First, the maximum edge density of a subset has a numerator bounded
by

(
n
2

)
and a denominator bounded by n; thus, it can assume one of O(n3) possible

values. Thus, if we can decide for a given rational ∆ whether there is a subset of edge
density at least ∆, we can find the maximum density using binary search over these
possible values, incurring a multiplicative increase of O(log n) in the running time.

Now, for a node i in G, let d(i) denote its degree. Also, for a set R ⊆ V , let e(R) denote
the number of edges induced among nodes of R, and let d(R) denote the number of
edges with exactly one end in R.

Consider the definition of a free-standing set from a previous question. We define an
instance of the free-standing set problem in which si = d(i)− 2∆ and eij = eji = 1 for
(i, j) ∈ E, eij = eji = 0 otherwise. Write

f(R) =
∑
i∈R

si −
∑

i∈R,j 6∈R
eij.

We claim that R has edge density at least ∆ if and only if it is a free-standing subset
with respect to {si}, {eij}; that is, if and only if f(R) ≥ 0. Indeed, observe that for
any R ⊂ V , the quantity

∑
i∈R d(i) is equal to 2e(R) + d(R). Thus,

f(R) = 2e(R) + d(R)− 2|R|∆− d(R) = 2e(R)− 2|R|∆,

and hence
e(R)

|R|
−∆ =

f(R)

2|R|
.

81

13. Suppose we are given a directed network G = (V,E) with a root node r, and a set
of terminals T ⊆ V . We’d like to disconnect many terminals from r, while cutting
relatively few edges.

We make this trade-off precise as follows. For a set of edges F ⊆ E, let q(F) denote
the number of nodes v ∈ T such that there is no r-v path in the subgraph (V,E − F).
Give a polynomial-time algorithm to find a set F of edges that maximizes the quantity
q(F)− |F |. (Note that setting F equal to the empty set is an option.)

Solution. We first observe the following fact about flow networks: there is a minimum
s-t cut (A,B) such that there is a path from s to each node in A, passing only through
nodes in A. (We’ll call such a cut a compact cut.) Indeed, consider any s-t cut (A,B),
and let A′ be the set of nodes v ∈ A such that there is an s-v path using only nodes
in A. We claim that the cut (A′, B ∪ (A− A′) has no greater capacity, since the only
edges out of A′ go to nodes of B; none go to (A− A′).
Now we consider the problem at hand. We can assume that in G, there is a path from
r to each node in V ; otherwise, we can initially re-define V to simply be the subset of
nodes that are reachable from r. We can also assume r 6∈ T .

We now construct a flow network G′ by adding to G a sink node t, and a node (v, t)
for each v ∈ T . All edges are given capacity 1. Let c∗ be the value of the minimum
cut in G. We know from the argument above that there is in fact a compact cut
(A,B) of capacity c∗; let F ∗ be the set of edges out of A that do not go directly
to t. Then every terminal in A can still be reached from r after the deletion of F ∗,
since (A,B) is a compact cut, so q(F ∗) = |B ∩ T |. The capacity c(A,B) is equal to
c∗ = |F ∗|+ |A∩ T | = |T | − (q(F ∗)− |F ∗|). So, in particular, there is a set of edges F ∗

for which q(F ∗)− |F ∗| = |T | − c∗.
Now, consider a set of edges F ′ that achieves the optimal value of q(F ′) − |F ′|. Let
A denote the set of nodes that can be reached from r after the deletion of F ′, and let
B = (V − A) ∪ {t}. We know that each edge e ∈ F ′ must have its tail in A and its
head in V −A, for otherwise we could delete e from F ′ and obtain a better set of edges.
Thus we have

c∗ ≤ c(A,B) = |A ∩ T |+ |F ′| = |T | − (q(F ′)− |F ′|),

and so q(F ′)−|F ′| ≤ |T |−c∗. It follows that the set of edges F ∗ defined in the previous
paragraph is optimal.

14. Some of your friends with jobs out West decide they really need some extra time each
day to sit in front of their laptops, and the morning commute from Woodside to Palo
Alto seems like the only option. So they decide to carpool to work.

Unfortunately, they all hate to drive, so they want to make sure that any carpool
arrangement they agree upon is fair, and doesn’t overload any individual with too
much driving. Some sort of simple round-robin scheme is out, because none of them
goes to work every day, and so the subset of them in the car varies from day to day.

82

Here’s one way to define fairness. Let the people be labeled S = {p1, . . . , pk}. We say
that the total driving obligation of pj over a set of days is the expected number of times
that pj would have driven, had a driver been chosen uniformly at random from among
the people going to work each day. More concretely, suppose the carpool plan lasts for
d days, and on the ith day a subset Si ⊆ S of the people go to work. Then the above
definition of the total driving obligation ∆j for pj can be written as ∆j =

∑
i:pj∈Si

1
|Si| .

Ideally, we’d like to require that pj drives at most ∆j times; unfortunately, ∆j may
not be an integer.

So let’s say that a driving schedule is a choice of a driver for each day — i.e. a sequence
pi1 , pi2 , . . . , pid with pit ∈ St — and that a fair driving schedule is one in which each pj
is chosen as the driver on at most d∆je days.

(a) Prove that for any sequence of sets S1, . . . , Sd, there exists a fair driving schedule.

(b) Give an algorithm to compute a fair driving schedule with running time polynomial
in k and d.

(c)(∗) One could expect k to be a much smaller parameter than d (e.g. perhaps k = 5
and d = 365). So it could be worth reducing the dependence of the running time on d
even at the expense of a much worse dependence on k. Give an algorithm to compute
a fair driving schedule whose running time has the form O(f(k) · d), where f(·) can be
an arbitrary function.

Solution. (a, b) We define a graph G = (V,E) with source s, vertices v1, . . . , vd for
each day, vertices w1, . . . , wk for each person, and sink t. There is an edge of capacity
1 from s to each vi, an edge of capacity 1 from vi to each wj with pj ∈ Si, and an
edge of capacity d∆je from wj to t. We know there is a feasible fractional flow in this
graph of value d, obtained by assigning a flow of value of 1

|Si| to each edge (vi, wj), and
flow values to all other edges as implied by the conservation condition. Thus there is a
feasible integer flow, and the flow values on the edges of the form (vi, wj) define a fair
driving schedule in the following way: pj drives on day i if and only if f(vi, wj) = 1.
This also gives a polynomial-time algorithm to compute the schedule.

(c) In place of {v1, . . . , vd}, we could make a node uS′ for every subset S ′ ⊆ S. There
is an edge (s, uS′) of capacity equal to the number of days dS′ that S ′ was the set of
people going to work. There is an edge of capacity dS′ from to wj for each pj ∈ uS′ ,
and an edge of capacity d∆je from wj to t. This graph G has a size that is dependent
only on k (the linear dependence on d comes simply from constructing it); thus we can
compute a maximum flow in G in time depending only on k. Again, there is a flow of
value d in G — assign flow value dS′

|S′| to each edge (uS′ , wj), and other flow values to
ensure conservation — so there is an integer flow of value d. We can use the integer
flow values on edges of the form (dS′ , wj) to define a fair driving schedule: of the days
on which the set S ′ goes to work, pj should be the driver on f(dS′ , wj) of them.

15. Suppose you live in a big apartment with a bunch of friends. Over the course of a year,
there are a lot of occasions when one of you pays for an expense shared by some subset

83

of the apartment, with the expectation that everything will get balanced out fairly at
the end of the year. For example, one of you may pay the whole phone bill in a given
month, another will occasionally make communal grocery runs to the nearby organic
food emporium; and a third might sometimes use a credit card to cover the whole bill
at the local Italian-Indian restaurant, Little Idli.

In any case, it’s now the end of the year, and time to settle up. There are n people in
the apartment; and for each ordered pair (i, j) there’s an amount aij ≥ 0 that i owes
j, accumulated over the course of the year. We will require that for any two people i
and j, at least one of the quantities aij or aji is equal to 0. This can be easily made
to happen as follows: if it turns out that i owes j a positive amount x, and j owes
i a positive amount y < x, then we will subtract off y from both sides and declare
aij = x− y while aji = 0. In terms of all these quantities, we now define the imbalance
of a person i to be the sum of the amounts that i is owed by everyone else, minus
the sum of the amounts that i owes everyone else. (Note that an imbalance can be
positive, negative, or zero.)

In order to restore all imbalances to 0, so that everyone departs on good terms, certain
people will write checks to others; in other words, for certain ordered pairs (i, j), i will
write a check to j for an amount bij > 0. We will say that a set of checks constitutes
a reconciliation if for each person i, the total value of the checks received by i, minus
the total value of the checks written by i, is equal to the imbalance of i. Finally, you
and your friends feel it is bad form for i to write j a check if i did not actually owe j
money, so we say that a reconciliation is consistent if, whenever i writes a check to j,
it is the case that aij > 0.

Show that for any set of amounts aij there is always a consistent reconciliation in which
at most n − 1 checks get written, by giving a polynomial-time algorithm to compute
such a reconciliation.

Solution. Construct a graph G = (V,E) where the nodes represent people that are
either owed or owe money. Let there be an edge (u, v) if person u owes person v money
and let the cost of this edge be the amount of money owed. Note that if (u, v) exists,
then (v, u) does not exist since we may just adjust for the difference.

Let G be the undirected graph obtained from G by ignoring the directions of the edges.
We repeatedly run BFS on G to find undirected cycles and eliminate them as specified
below. We do this as follows:

84

Search for an undirected CYCLE While CYCLE != NULL (a cycle exists)

Find the edge in CYCLE with minimum cost. Let this minimum cost

be stored in MINCOST and the correspoding edge in MINEDGE. For each

edge EDGE in CYCLE If EDGE has the same direction as MINEDGE reset

EDGE’s cost to its current cost less MINCOST Else reset EDGE’s cost

to its current cost plus MINCOST Endif Endfor Remove all edges whose

cost has been reduced to 0 (including MINEDGE) Search for a new

undirected CYCLE Endwhile

Note that each time through the while loop, we get rid of a cycle. Since there are m
edges, we go through the outer loop at most m times. Also finding a cycle via BFS
takes O(m+ n) time. Thus the overall running time is O(m(m+ n)).

Note that in each iteration, we preserve all imbalances; so at the end we will have a
reconciliation. Further, we preserve the direction of the edges since we modify according
to the direction and only by the minimum cost edge in the cycle; thus, at the end, we
will have a consistent reconciliation. Since G has no cycles at termination, it must
be a tree or a forest, and therefore has at most n − 1 edges. Thus we have produced
consistent reconciliation in which at most n− 1 checks get written.

Grader’s Comments: It was necessary to search for undirected cycles in G, rather
than directed cycles, since eliminating only the directed cycles in G will not necessarily
reduce the number of edges to n− 1.

There were three key points in the proof. First, imbalances are preserved as each
cycle is processed. Second, directions of edges are never reversed, so the resulting
reconciliation is consistent. Third, since all undirected cycles are eliminated, there are
at most n-1 edges and at most n− 1 checks written.

Some solutions simply ran a flow algorithm with a super-source attached to the people
with positive imbalances, super-sink attached to the people with negative imbalances,
and edges of infinite capacity joining pairs who owed each other initially; after this,
they claimed that the resulting flow would be positive on at most n−1 edges. It seems
hard to find a rule for choosing augmenting paths that will guarantee this, and also
hard to prove that this property holds. (Of course, if one explicitly cancels cycles after
finding the flow, then this would be correct by analogy with the above solution.)

16. Consider a set of mobile computing clients in a certain town who each need to be
connected to one of several possible base stations. We’ll suppose there are n clients,
with the position of each client specified its by (x, y) coordinates in the plane. There
are also k base stations; the position of each of these is specified by (x, y) coordinates
as well.

For each client, we wish to connect it to exactly one of the base stations. Our choice
of connections is constrained in the following ways. There is a range parameter r —
a client can only be connected to a base station that is within distance r. There is

85

also a load parameter L — no more than L clients can be connected to any single base
station.

Your goal is to design a polynomial-time algorithm for the following problem. Given
the positions of a set of clients and a set of base stations, as well as the range and load
parameters, decide whether every client can be connected simultaneously to a base
station, subject to the range and load conditions in the previous paragraph.

17. You can tell that cellular phones are at work in rural communities, from the giant mi-
crowave towers you sometimes see sprouting out of corn fields and cow pastures. Let’s
consider a very simplified model of a cellular phone network in a sparsely populated
area.

We are given the locations of n base stations, specified as points b1, . . . , bn in the plane.
We are also given the locations of n cellular phones, specified as points p1, . . . , pn in the
plane. Finally, we are given a range parameter ∆ > 0. We call the set of cell phones
fully connected if it is possible to assign each phone to a base station in such a way
that

• Each phone is assigned to a different base station, and

• If a phone at pi is assigned to a base station at bj, then the straight-line distance
between the points pi and bj is at most ∆.

Suppose that the owner of the cell phone at point p1 decides to go for a drive, traveling
continuously for a total of z units of distance due east. As this cell phone moves, we
may have to update the assignment of phones to base stations (possibly several times)
in order to keep the set of phones fully connected.

Give a polynomial-time algorithm to decide whether it is possible to keep the set of
phones fully connected at all times during the travel of this one cell phone. (You should
assume that all other phones remain stationary during this travel.) If it is possible,
you should report a sequence of assignments of phones to base stations that will be
sufficient in order to maintain full connectivity; if it is not possible, you should report
a point on the traveling phone’s path at which full connectivity cannot be maintained.

You should try to make your algorithm run in O(n3) time if possible.

Example: Suppose we have phones at p1 = (0, 0) and p2 = (2, 1); we have base
stations at b1 = (1, 1) and b2 = (3, 1); and ∆ = 2. Now consider the case in which the
phone at p1 moves due east a distance of 4 units, ending at (4, 0). Then it is possible
to keep the phones fully connected during this motion: We begin by assigning p1 to b1
and p2 to b2, and we re-assign p1 to b2 and p2 to b1 during the motion. (For example,
when p1 passes the point (2, 0).)

Solution. We first decide whether the phones can be fully connected in the starting
position of p1. To do this, we construct a bipartite graph G = (X ∪ Y,E), where X is
the set of phones, Y is the set of base stations, and there is an edge (pi, bj) if and only

86

if the distance from pi to bj is at most ∆. By the definition of G, a perfect matching
corresponds to a legal assignment of phones to base stations; thus, the phones can be
fully connected if and only if G has a perfect matching, and this can be checked in
O(n3) time.

Define an event to be a position t on the path of phone p1 at which it first comes into
range of a base station, or first goes out of range of a base station. The path of p1 is a
line, and the set of points in range of a base station bj is a circle of radius ∆; since the
line can intersect the circle at most twice, there is at most one event in which p1 comes
into range of bj and at most one event in which it goes out of range of bj. Thus, there
are at most 2n events total; we can sort them by x-coordinate in the order t1, t2, . . . , tk,
with k ≤ 2n.

In the interval between consecutive events, the bipartite graph G does not change. At
an event ti, the bipartite graph changes because some edge incident to p1 is either
added or deleted. Let G[ti] denote the bipartite graph just after event ti. Since these
are the only points at which the graph changes, the phones can be fully connected if
and only if each of G,G[t1], G[t2], . . . , G[tk] has a perfect matching.

Thus, an O(n4) algorithm would be to test each of these graphs for a perfect matching.
To bring the running time down to O(n3), we make the following observation. A perfect
matching M in G[ti] becomes a matching of size either n or n−1 in G[ti+1], depending
on whether one of the edges in M is the edge that is deleted during the event ti. In
the first case, M is already a perfect matching in G[ti+1], so we don’t have to do any
work at all for this event. In the second case, we simply to need to search for a single
augmenting path in order to decide whether the existing matching of size n − 1 can
be increased to a perfect matching. This takes time O(|E|) = O(n2). Moreover, the
sequence of assignments can be recorded by keeping track of the sequence of matching
constructed over all the events.

Thus, the total running time of the improved algorithm is O(n3) (for the initial perfect
matching in G) plus O(kn2) (for the (at most) one augmenting path at each event).
Since k ≤ 2n, the total running time is O(n3 + kn2) = O(n3).

18. Suppose you’re managing a collection of processors and must schedule a sequence of
jobs over time.

The jobs have the following characteristics. Each job j has an arrival time aj when it is
first available for processing, a length `j which indicates how much processing time it
needs, and a deadline dj by which it must be finished. (We’ll assume 0 < `j ≤ dj−aj.)
Each job can be run on any of the processors, but only on one at a time; it can also
be pre-empted and resumed from where it left off (possibly after a delay) on another
processor.

Moreover, the collection of processors is not entirely static either: you have an overall
pool of k possible processors; but for each processor i, there is an interval of time [ti, t

′
i]

during which it is available; it is unavailable at all other times.

87

Given all this data about job requirements and processor availability, you’d like to
decide whether the jobs can all be completed or not. Give a polynomial-time algorithm
that either produces a schedule completing all jobs by their deeadlines, or reports
(correctly) that no such schedule exists. You may assume that all the parameters
associated with the problem are integers.

Example. Suppose we have two jobs J1 and J2. J1 arrives at time 0, is due at time
4, and has length 3. J2 arrives at time 1, is due at time 3, and has length 2. We also
have two processors P1 and P2. P1 is available between times 0 and 4; P2 is available
between times 2 and 3. In this case, there is a schedule that gets both jobs done:

• At time 0, we start job J1 on processor P1.

• At time 1, we pre-empt J1 to start J2 on P1.

• At time 2, we resume J1 on P2. (J2 continues processing on P1.)

• At time 3, J2 completes by its deadline. P2 ceases to be available, so we move J1
back to P1 to finish its remaining one unit of processing there.

• At time 4, J1 completes its processing on P1.

Notice that there is no solution that does not involve pre-emption and moving of jobs.

Solution. Let a∗ be the earliest arrival time of any job, and d∗ the latest deadline of
any job. We break up the interval I = [a∗, d∗] at each value of any aj, dj, ti, or t′i. Let
the resulting sub-intervals of I be denoted I1, I2, . . . , Ir, with Ii = [si, s

′
i]. Note that

s′i = si+1 in our notation; we let qi = s′i − si denote the length of interval Ii in time
steps. Observe that the set of processors available is constant throughout each interval
Ii; let ni denote the size of this set. Also, the set of jobs that have been released but
are not yet due is constant throughout each interval Ii.

We now construct a flow network G that tells us, for each job j and each interval Ii,
how much time should be spent processing job j during interval Ii. ¿From this, we
can construct the schedule. We define a node uj for each job j, and a node vi for each
interval Ii. If Ii ⊆ [aj, dj], then we add an edge (uj, vi) of capacity qi. We define an
edge from the source s to each uj with capacity `j, and define an edge from each vi to
the sink t with capacity niqi.

Now, suppose there is a schedule that allows each job to complete by its deadline, and
suppose it processes job j for zji units of time in the interval Ii. Then we define a
flow with value `j on the edge (s, uj), value zji on the edge (uj, vi), and sufficient flow
on the edge (vi, t) to satisfy conservation. Note that the capacity of (vi, t) cannot be
exceeded, since we have a valid schedule.

Conversely, given an integer flow of value
∑

j `j in G, we run job j for zji = f(uj, vi)
units of time during interval Ii. Since the flow has value

∑
j `j, it clearly saturates

each edge (s, uj), and so uj will be processed for `j units of time, as required, if we can
guarantee that all jobs j can really be scheduled for zji units of time during interval Ii.

88

The issue here is the following: we are told that job j must receive zji units of processing
time during Ii, and it can move from one processor to another during the interval, but
we need to avoid having two processors working on the same job at the same point in
time. Here is a way to assign jobs to processors that avoids this. Let P1, P2, . . . , Pni

denote the processors, and let yj =
∑

r<j zri. For each k = yj + 1, yj + 2, . . . , yj+1, we
have processor dk/qie spend the (k − qibk/qic)th step of interval Ii working on job j.
Since

∑
j zji ≤ niqi, each job gets a sufficient number of steps allocated to it; and since

zji ≤ qi for each j, this allocation scheme does not involve two processors working on
the same job at the same point in time.

19. In a lot of numerical computations, we can ask about the “stability” or “robustness”
of the answer. This kind of question can be asked for combinatorial problems as well;
here’s one way of phrasing the question for the minimum spanning tree problem.

Suppose you are given a graph G = (V,E), with a cost ce on each edge e. We view the
costs as quantities that have been measured experimentally, subject to possible errors
in measurement. Thus, the minimum spanning tree one computes for G may not in
fact be the “real” minimum spanning tree.

Given error parameters ε > 0 and k > 0, and a specific edge e′ = (u, v), you would like
to be able to make a claim of the following form:

(∗) Even if the cost of each edge were to be changed by at most ε (either
increased or decreased), and the costs of k of the edges other than e′ were
further changed to arbitrarily different values, the edge e′ would still not
belong to any minimum spanning tree of G.

Such a property provides a type of guarantee that e′ is not likely to be belong to the
minimum spanning tree, even assuming significant measurement error.

Give a polynomial-time algorithm that takes G, e′, ε, and k, and decides whether or
not property (∗) holds for e′.

Solution. We test whether e′ = (u, v) could enter the MST as follows. We first lower
the cost of e′ by ε and raise the cost of all other edges by ε. We then form a graph
G′ by deleting all edges whose cost is greater than or equal to that of e′. Finally, we
determine whether the minimum u-v cut in G has at most k edges.

If the answer is “yes,” then by raising the cost of these k edges to ∞, we see that e′ is
one of the cheapest edges crossing a u-v cut, and so it belongs to an MST. Conversely,
suppose e′ can be made to enter the MST. Then this remains true if we continue to
lower the cost of e′ by as much as possible, and if we continue to raise the costs of all
other edges by as much as possible. Now, at this point, consider the set E ′ of k edges
whose costs we need to alter arbitrarily. If we delete E ′ from the graph, then there
cannot be a u-v path consisting entirely of edges lighter than e′; thus, there is no u-v
path in the graph G′ defined above, and so E ′ defines a u-v cut of value at most k.

89

20. Let G = (V,E) be a directed graph, and suppose that for each node v, the number of
edges into v is equal to the number of edges out of v. That is, for all v,

|{(u, v) : (u, v) ∈ E)}| = |{(v, w) : (v, w) ∈ E)}|.

Let x, y be two nodes of G, and suppose that there exist k mutually edge-disjoint
paths from x to y. Under these conditions, does it follow that there exist k mutually
edge-disjoint paths from y to x? Give a proof, or a counter-example with explanation.

Solution. If we put a capacity of 1 on each edge, then by the integrality theorem for
maximum flows, there exist k edge-disjoint x-y paths if and only if there exists a flow
of value k. By the max-flow min-cut theorem, this latter condition holds if and only if
there is no x-y cut (A,B) of capacity less than k.

Now suppose there were a y-x cut (B′, A′) of capacity strictly less than k, and consider
the x-y cut (A′, B′). We claim that the capacity of (A′, B′) is equal to the capacity of
(B′, A′). For if we let δ−(v) and δ+(v) denote the number of edges into and out of a
node v respectively, then we have

c(A′, B′)− c(B′, A′) = |{(u, v) : u ∈ A′, v ∈ B′}| − |{(u, v) : u ∈ B′, v ∈ A′}|
= |{(u, v) : u ∈ A′, v ∈ B′}|+ |{(u, v) : u ∈ A′, v ∈ A′}| −
|{(u, v) : u ∈ A′, v ∈ A′}| − |{(u, v) : u ∈ B′, v ∈ A′}|

=
∑
v∈A

δ+(v)−
∑
v∈A

δ−(v)

= 0.

It follows that c(A′, B′) < k as well, contradicting our observation in the first para-
graph. Thus, every y-x cut has capacity at least k, and so there exist k edge-disjoint
y-x paths.

21. Given a graph G = (V,E), and a natural number k, we can define a relation
G,k−→ on

pairs of vertices of G as follows. If x, y ∈ V , we say that x
G,k−→y if there exist k mutually

edge-disjoint paths from x to y in G.

Is it true that for every G and every k ≥ 0, the relation
G,k−→ is transitive? That is, is

it always the case that if x
G,k−→y and y

G,k−→z, then we have x
G,k−→z? Give a proof or a

counter-example.

22. Give a polynomial time algorithm for the following minimization analogue of the max-
flow problem. You are given a directed graph G = (V,E), with a source s ∈ V and
sink t ∈ V , and numbers (capacities) `(v, w) for each edge (v, w) ∈ E. We define a
flow f , and the value of a flow, as usual, requiring that all nodes except s and t satisfy
flow conservation. However, the given numbers are lower bounds on edge flow, i.e.,
they require that f(v, w) ≥ `(v, w) for every edge (v, w) ∈ E, and there is no upper
bound on flow values on edges.

90

(a) Give a polynomial time algorithm that finds a feasible flow of minimum possible
value.

(b) Prove an analog of the max-flow min-cut theorem for this problem (i.e., does
min-flow = max-cut?)

23. We define the escape problem as follows. We are given a directed graph G = (V,E)
(picture a network of roads); a certain collection of nodes X ⊂ V are designated as
populated nodes, and a certain other collection S ⊂ V are designated as safe nodes.
(Assume that X and S are disjoint.) In case of an emergency, we want evacuation
routes from the populated nodes to the safe nodes. A set of evacuation routes is
defined as a set of paths in G so that (i) each node in X is the tail of one path, (ii)
the last node on each path lies in S, and (iii) the paths do not share any edges. Such
a set of paths gives a way for the occupants of the populated nodes to “escape” to S,
without overly congesting any edge in G.

(a) Given G, X, and S, show how to decide in polynomial time whether such a set of
evacuation routes exists.

(b) Suppose we have exactly the same problem as in (a), but we want to enforce an
even stronger version of the “no congestion” condition (iii). Thus, we change (iii) to
say “the paths do not share any nodes.”

With this new condition, show how to decide in polynomial time whether such a set
of evacuation routes exists.

Also, provide an example with a given G, X, and S, in which the answer is “yes” to
the question in (a) but “no” to the question in (b).

24. You are helping the medical consulting firm Doctors Without Weekends set up a system
for arranging the work schedules of doctors in a large hospital. For each of the next n
days, the hospital has determined the number of doctors they want on hand; thus, on
day i, they have a requirement that exactly pi doctors be present.

There are k doctors, and each is asked to provide a list of days on which he or she is
willing to work. Thus, doctor j provides a set Lj of days on which he or she is willing
to work.

The system produced by the consulting firm should take these lists, and try to return
to each doctor j a list L′j with the following properties.

(A) L′j is a subset Lj, so that doctor j only works on days he or she finds acceptable.

(B) If we consider the whole set of lists L′1, . . . , L
′
k, it causes exactly pi doctors to be

present on day i, for i = 1, 2, . . . , n.

(a) Describe a polynomial-time algorithm that implements this system. Specifically,
give a polynomial-time algorithm that takes the numbers p1, p2, . . . , pn, and the lists
L1, . . . , Lk, and does one of the following two things.

91

• Return lists L′1, L
′
2, . . . , L

′
k satisfying properties (A) and (B); or

• Report (correctly) that there is no set of lists L′1, L
′
2, . . . , L

′
k that satisfies both

properties (A) and (B).

You should prove your algorithm is correct, and briefly analyze the running time.

(b) The hospital finds that the doctors tend to submit lists that are much too restric-
tive, and so it often happens that the system reports (correctly, but unfortunately)
that no acceptable set of lists L′1, L

′
2, . . . , L

′
k exists.

Thus, the hospital relaxes the requirements as follows. They add a new parameter
c > 0, and the system now should try to return to each doctor j a list L′j with the
following properties.

(A∗) L′j contains at most c days that do not appear on the list Lj.

(B) (Same as before.) If we consider the whole set of lists L′1, . . . , L
′
k, it causes exactly

pi doctors to be present on day i, for i = 1, 2, . . . , n.

Describe a polynomial-time algorithm that implements this revised system. It should
take the numbers p1, p2, . . . , pn, the lists L1, . . . , Lk, and the parameter c > 0, and do
one of the following two things.

• Return lists L′1, L
′
2, . . . , L

′
k satisfying properties (A∗) and (B); or

• Report (correctly) that there is no set of lists L′1, L
′
2, . . . , L

′
k that satisfies both

properties (A∗) and (B).

In this question, you need only describe the algorithm; you do not need to explicitly
write a proof of correctness or running time analysis. (However, your algorithm must
be correct, and run in polynomial time.)

Solution. We construct a flow network as follows. There is a node uj for each doctor
j and a node vi for each day i. There is an edge (uj, vi) of capacity 1 if doctor j can
work on day i, and no edge otherwise. There is a source s, and an edge (s, uj) of
capacity |Lj| for each j. There is a sink t, and an edge (vi, t) of capacity pi for each i.

Now we ask: is there an s-t flow of value
∑n

i=1 pi in this flow network? If there is, then
there is an integer-valued flow, and we can produce a set of lists {L′i} from this as
follows: assign doctor j to day i if there is a unit of flow on the edge (uj, vi). In this
way, each doctor only works on days he or she finds acceptable, and each day i has
pi working on it. Conversely, if there is a valid set of lists for the doctors, then there
will be a flow of value

∑n
i=1 pi in the network: we simply raise one unit of flow on each

path s-uj-vi-t, where doctor j works on day i.

The total running time for this algorithm is dominated by the time for a flow compu-
tation on a graph with O(kn) edges, where the total capacity out of the sink is O(kn);
thus, the total running time is O(k2n2).

92

(b) We take the previous flow network and add some nodes to it, modeling the re-
quirements. For each doctor j, we add a “spill-over” node u′j. There is an edge (u′j, vi)
of capacity 1 for each day i such that doctor j doesn’t want to work on i. There is an
edge (s, u′j) of capacity c for each j.

Again we ask: is there an s-t flow of capacity
∑n

i=1 pi in this flow network? If there is,
then there is an integer-valued flow, and we can produce a set of lists {L′i} from this
as follows: assign doctor j to day i if there is a unit of flow on the edge (uj, vi) or if
there is a unit of flow on the edge (u′j, vi).

25. You are consulting for an environmental statistics firm. They collect statistics, and
publish the collected data in a book. The statistics is about populations of different
regions in the world, and is in the millions. Examples of such statistics would look like
the top table.

Country A B C Total
grownup men 11.998 9.083 2.919 24.000
grownup women 12.983 10,872 3.145 27.000
children 1.019 2.045 0.936 4.000

Total 26.000 22.000 7.000 55.000

We will assume here for simplicity that our data is such that all row and column sums
are integers. The census rounding problem is to round all data to integers without
changing any row or column sum. Each fractional number can be rounded either up or
down without. For example a good rounding for the above data would be as follows.

Country A B C Total
grownup men 11.000 10.000 3.000 24.000
grownup women 13.000 10.000 4.000 27.000
children 2.000 2.000 0.000 4.000

Total 26.000 22.000 7.000 55.000

(a) Consider first the special case when all data is between 0 and 1. So you have
a matrix of fractional numbers between 0 and 1, and your problem is to round each
fraction that is between 0 and 1 to either 0 or 1 without changing the row or column
sums. Use a flow computation to check if the desired rounding is possible.

(b) Consider the census data rounding problem as defined above, where row and
column sums are integers, and you want round each fractional number α to either bαc
or dαe. Use a flow computation to check if the desired rounding is possible.

(c) Prove that the rounding we are looking for in (a) and (b) always exists.

93

26. (∗) Some friends of yours have grown tired of the game “Six degrees of Kevin Bacon”
(after all, they ask, isn’t it just breadth-first search?) and decide to invent a game
with a little more punch, algorithmically speaking. Here’s how it works.

You start with a set X of n actresses and a set Y of n actors, and two players P0 and
P1. P0 names an actress x1 ∈ X, P1 names an actor y1 who has appeared in a movie
with x1, P0 names an actress x2 who has appeared in a movie with y1, and so on. Thus,
P0 and P1 collectively generate a sequence x1, y1, x2, y2, . . . such that each actor/actress
in the sequence has co-starred with the actress/actor immediately preceding. A player
Pi (i = 0, 1) loses when it is Pi’s turn to move, and he/she cannot name a member of
his/her set who hasn’t been named before.

Suppose you are given a specific pair of such sets X and Y , with complete information
on who has appeared in a movie with whom. A strategy for Pi, in our setting, is an
algorithm that takes a current sequence x1, y1, x2, y2, . . . and generates a legal next
move for Pi (assuming it’s Pi’s turn to move). Give a polynomial-time algorithm that
decides which of the two players can force a win, in a particular instance of this game.

Solution. Build a flow network G with vertices s, vi for each xi ∈ X, wj for each
yj ∈ Y , and t. There are edges (s, vi) for all i, (wj, t) for all j, and (vi, wj) iff xi
and yj have appeared together in a movie. All edges are given capacity 1. Consider a
maximum s-t flow f in G; by the integrality theorem, it consists of a set {R1, . . . , Rk}
of edge-disjoint s-t paths, where k is the value of f . (Note that this is simply the
construction we used to reduce bipartite matching to maximum flow.)

Suppose the value of f is n. Then each time player 1 names an actress xi, player 2 can
name the actor yj so that (vi, wj) appear on a flow path together. In this way, player
1 must eventually run out of actresses and lose.

On the other hand, suppose the value of f is less than n. Player 1 can thus start with
an actress xi so that vi lies on no flow path. Now, at every point of the game, we claim
the vertex for the actor yj named by player 2 lies on some flow path Rt. For if not,
consider the first time when wj does not lie on a flow path; if we take the sequence of
edges in G traversed by the two players thus far, add s to the beginning and t to the
end, we obtain an augmenting s-t path, which contradicts the maximality of f . Hence,
each time player 2 names an actor yj, player 1 can name an actress x` so that (x`, yj)
appear on a flow path together. In this way, player 2 must eventually out of actors
and lose.

27. Statistically, the arrival of spring typically results in increased accidents, and increased
need for emergency medical treatment, which often requires blood transfusions. Con-
sider the problem faced by a hospital that is trying to evaluate whether their blood
supply is sufficient.

The basic rule for blood donation is the following. A person’s own blood supply has
certain antigens present (we can think of antigens as a kind of molecular signature);
and a person cannot receive blood with a particular antigen if their own blood does not

94

have this antigen present. Concretely, this principle underpins the division of blood
into four types: A, B, AB, and O. Blood of type A has the A antigen, blood of type B
has the B antigen, blood of type AB has both, and blood of type O has neither. Thus,
patients with type A can receive only blood types A or O in a transfusion, patients
with type B can receive only B or O, patients with type O can receive only O, and
patients with type AB can receive any of the four types.1

(a) Let sO, sA, sB and sAB denote the supply in whole units of the different blood
types on hand. Assume that the hospital knows the projected demand for each blood
type dO, dA, dB and dAB for the coming week. Give a polynomial time algorithm to
evaluate if the blood on hand would suffice for the projected need.

(b) Consider the following example. Over the next week, they expect to need at most
100 units of blood. The typical distribution of blood types in US patients is 45% type
O, 42% type A, 10% type B, and 3% type AB. The hospital wants to know if the blood
supply they have on hand would be enough if 100 patients arrive with the expected
type distribution. There is a total of 105 units of blood on hand. The table below
gives these demands, and the supply on hand.

blood type: O A B AB
supply: 50 36 11 8
demand: 45 42 10 3

Is the 105 units of blood on hand enough to satisfy the 100 units of demand? Find an
allocation that satisfies the maximum possible number of patients. Use an argument
based on a minimum capacity cut to show why not all patients can receive blood.
Also, provide an explanation for this fact that would be understandable to the clinic
administrators, who have not taken a course on algorithms. (So, for example, this
explanation should not involve the words “flow,” “cut,” or “graph” in the sense we use
them in CS 482.)

Solution. To solve this problem, construct a graph G = (V,E) as follows: Let the
set of vertices consist of a super source node, four supply nodes (one for each blood
type) adjacent to the source, four demand nodes and a super sink node that is adjacent
to the demand nodes. For each supply node u and demand node v, construct an edge
(u, v) if type v can receive blood from type u and set the capactity to∞ or the demand
for type v. Construct an edge (s, u) between the source s and each supply node u with
the capacity set to the available supply of type u. Similarly, for each each demand
node v and the sink t, construct an edge (v, t) with the capacity set to the demand for
type v.

Now run the F-F algorithm on this graph to find the max-flow. If the edges from the
demand nodes to the sink are all saturated in the resulting max-flow, then there is

1The Austrian scientist Karl Landsteiner received the Nobel Prize in 1930 for his discovery of the blood
types A, B, O, and AB.

95

sufficient supply for the projected need. Using the running time in Section 6.5, we get
a time bound of O(logC), where C is the total supply. (Note that the graph itself has
constant size.)

To see why this must be the case, consider a max-flow where at least one of the demand
to sink edges is not saturated. Denote this edge by (v, t). Let S be the set of of blood
types that can donate to a person with blood type v. Note that all edges of the form
(s, u) with u ∈ S must then be saturated. If this were not the case we could push
more flow along (u, v) for some u ∈ S. Now also note that since the capacities on the
demand-sink edges is the expected demand, the max-flow at best satisfies this demand.
If the demand-sink edges are saturated, then clearly the demand can be satisfied.

(b) Consider a cut containing the source, and the supply and demand nodes for B and
A. The capacity of this cut is 50 + 36 + 10 + 3 = 99, and hence all 100 units of demand
cannot be satisfied.

An explanation for the clinic administrators: There are 87 people with demand for
blood types O and A; these can only be satisfied by donors with blood types O and
A; and there are only 86 such donors.

Grader’s Comments: Since part (b) asked for an argument based on a minimum
cut, it was necessary to actually specify a cut.

Part (a) can also be solved by a greedy algorithm; basically, it works as follows: The
O group can only receive blood from O donors; so if the O group is not satisfied, there
is no solution. Otherwise, satisfy the A and B groups using the leftovers from the O
group; if this is not possible, there is no solution. Finally, satisfy the AB group using
any remaining leftovers. A short explanation of correctness (basically following the
above reasoning) is necessary for this algorithm, as it was with the flow algorithm.

28. Suppose you and your friend Alanis live, together with n−2 other people, at a popular
off-campus co-operative apartment, The Upson Collective. Over the next n nights,
each of you is supposed to cook dinner for the co-op exactly once, so that someone
cooks on each of the nights.

Of course, everyone has scheduling conflicts with some of the nights (e.g. prelims,
concerts, etc.) — so deciding who should cook on which night becomes a tricky task.
For concreteness, let’s label the people

{p1, . . . , pn},

the nights
{d1, . . . , dn};

and for person pi, there’s a set of nights Si ⊂ {d1, . . . , dn} when they are not able to
cook.

A feasible dinner schedule is an assignment of each person in the co-op to a different
night, so that each person cooks on exactly one night, there is someone cooking on
each night, and if pi cooks on night dj, then dj 6∈ Si.

96

(a) Describe a bipartite graph G so that G has a perfect matching if and only if there
is a feasible dinner schedule for the co-op.

(b) Anyway, your friend Alanis takes on the task of trying to construct a feasible dinner
schedule. After great effort, she constructs what she claims is a feasible schedule, and
heads off to class for the day.

Unfortunately, when you look at the schedule she created, you notice a big problem.
n − 2 of the people at the co-op are assigned to different nights on which they are
available: no problem there. But for the other two people — pi and pj — and the
other two days — dk and d` — you discover that she has accidentally assigned both pi
and pj to cook on night dk, and assigned no one to cook on night d`.

You want to fix Alanis’s mistake, but without having to re-compute everything from
scratch. Show that it’s possible, using her “almost correct” schedule, to decide in only
O(n2) time whether there exists a feasible dinner schedule for the co-op. (If one exists,
you should also output it.)

Solution. (a) Let G = (V,E) be a bipartite graph with a node pi ∈ V representing
each person and a node dj ∈ V representing each night. The edges consist of all pairs
(pi, dj) for which dj 6∈ Si.

Now, a perfect matching in G is a pairing of people and nights so that each person
is paired with exactly one night, no two people are paired with the same night, and
each person is available on the night they are paired with. Thus, if G has a perfect
matching, then it has a feasible dinner schedule. Conversely, if G has a feasible dinner
schedule, consisting of a set of pairs S = {(pi, dj)}, then each (pi, dj) ∈ S is an edge of
G, no two of these pairs share an endpoint in G, and hence these edges define a perfect
matching in G.

(b) An algorithm is as follows. First, construct the bipartite graph G from part (a):
it takes O(1) time to decide for each pair (pi, dj) whether it should be an edge in G, so
the total time to construct G is O(n2). Now, let Q denote the set of edges constructed
by Alanis. Delete the edge (pj, dk) from Q, obtaining a set of edges Q′. Q′ has size
n− 1, and since no person or night appears more than once in Q′, it is a matching.

We now try to find an augmenting path inG with respect toQ′, in timeO(|E|) = O(n2).
If we find such an augmenting path P , then increasing Q′ using P gives us a matching
of size n, which is a perfect matching and hence by (a) corresponds to a feasible dinner
schedule. If G has no augmenting path with respect to Q′, then by a theorem from
class, Q′ must be a maximum matching in G. In particular, this means that G has no
perfect matching, and hence by (a) there is no feasible dinner schedule.

29. We consider the bipartite matching problem on a bipartite graph G = (V,E). As usual,
we say that V is partitioned into sets X and Y , and each edge has one end in X and
the other in Y .

If M is a matching in G, we say that a node y ∈ Y is covered by M if y is an end of
one of the edges in M .

97

y

y

y

y

1

2

3

4

y
5

x1

x
2

Figure 5: An instance of Coverage Expansion.

(a) Consider the following problem. We are given G and a matching M in G. For a
given number k, we want to decide if there is a matching M ′ in G so that

(i) M ′ has k more edges than M does, and

(ii) every node y ∈ Y that is covered by M is also covered by M ′.

We call this the Coverage Expansion problem, with input G, M , and k. and we
will say that M ′ is a solution to the instance.

Give a polynomial-time algorithm that takes an instance of Coverage Expansion
and either returns a solution M ′ or reports (correctly) that there is no solution. (You
should include an analysis of the running time, and a brief proof of why it is correct.)

Note: You may wish to also look at part (b) to help in thinking about this.

Example: Consider the accompanying figure, and suppose M is the matching con-
sisting of the one edge (x1, y2). Suppose we are asked the above question with k = 1.

Then the answer to this instance of Coverage Expansion is “yes.” We can let M ′

be the matching consisting (for example) of the two edges (x1, y2) and (x2, y4); M
′ it

has 1 more edge than M , and y2 is still covered by M ′.

(b) Give an example of an instance of Coverage Expansion — specified by G, M ,
and k — so that the following situation happens.

The instance has a solution; but in any solution M ′, the edges of M do not
form a subset of the edges of M ′.

98

(c) Let G be a bipartite graph, and let M be any matching in G. Consider the following
two quantities.

• K1 is the size of the largest matching M ′ so that every node y that is covered by
M is also covered by M ′.

• K2 is the size of the largest matching M ′′ in G.

Clearly K1 ≤ K2, since K2 is obtained by considering all possible matchings in G.

Prove that in fact K1 = K2; that is, we can obtain a maximum matching even if we’re
constrained to cover all the nodes covered by our initial matching M .

Solution. (a) We set up a flow problem. We define a new graph G′ for our flow
problem by taking G and directing all edges from X to Y , and adding a super source
s to the graph, and add edges (s, x) for all nodes x ∈ X with capacity 1, and have
each edge of G have capacity 1 also. We add a super sink t and add edges (y, s) for
all nodes y that are not covered by the matching M . Now we define a flow problem
where node s has a supply of |M |+ k, node t has a demand of k, all nodes y ∈ Y that
are covered in M have a demand of 1. We claim that a flow satisfying these demands
exists if an only if the matching M ′ exists.

If there is a flow in G′ satisfying the demands, then by the integrality theorem there
is an integer flow f ′. The edges e in G that have f ′(e) = 1 form the desired matching
M ′.

If there is a matching M ′, then we can define a flow f ′ in G′ as follows. For edges
e = (x, y) we have f ′(e) = 1 if e is in M ′ and 0 otherwise, we set f ′(e) = 1 for edges
e = (s, x) if node x is covered by M ′, and finally, we set f ′(e) = 1 for edges e = (y, t)
if node y is covered by M ′, but not covered by M . This satisfies all the demands.

It takes O(m) time to build the flow network, and O(mC) = O(mn) time to determine
whether the desired flow exists.

(b) For example, take a 4 node graph with two nodes on each side, and edges (x1, y1), (x1, y2)
and (x2, y2). Let M have the single edge (x1, y2) and set k = 1. Then the solution
exists, but only by deleting the edge (x1, y2), and reassigning y2 to x2.

(c) Consider the graph G′ analogous to the one we used in part (a), but connecting all
nodes y ∈ Y to the new sink t via an edge of capacity 1. Instead of using demands, we
view this as a standard maximum flow problem — this is just the construction from
the notes. We will show that there is a maximum matching that covers all nodes in Y
that were covered by M . This implies that K1 ≥ K2, and hence they are equal.

The matching M gives rise to a flow of value |M | in G. Let f denote this flow. We
use the Ford-Fulkerson algorithm, but instead of starting from the all-zero flow, we

99

start from the integer flow f . This results in an integer maximum flow f ′. The value
of f ′ is K2. We claim that the corresponding matching M ′ covers all nodes in Y that
are covered by matching M . A matching corresponding to an integer flow f in G′

covers exactly those nodes in Y for which f(e) = 1 for s = (y, t). The the statement
above follows from the observation that for any node y ∈ Y and edge e = (y, t) if
f(e) = 1 and we obtain f ′ by the Ford-Fulkerson algorithm starting from the flow f ,
then f ′(e) = 1 also. For a flow augmentation to decrease the value of the flow on an
edge e, we would have to use the corresponding backwards edge in the augmenting
path, but this backwards leaves t, and hence is not part of any simple s-t paths.

30. Suppose you’re a consultant for the Ergonomic Architecture Commission, and they
come to you with the following problem.

They’re really concerned about designing houses that are “user-friendly,” and they’ve
been having a lot of trouble with the set-up of light fixtures and switches in newly
designed houses. Consider, for example, a one-floor house with n light fixtures and n
locations for light switches mounted in the wall. You’d like to be able to wire up one
switch to control each light fixture, in such a way that a person at the switch can see
the light fixture being controlled.

Sometimes this is possible, and sometimes it isn’t. Consider the two simple floor plans
for houses in the accompanying figure. There are three light fixtures (labeled a, b, c)
and three switches (labeled 1, 2, 3). It is possible to wire switches to fixtures in the
example on the left so that every switch has line-of-sight to the fixture, but this is not
possible in the example on the right.

a

b

c

a

b

c

1

2

3

1

2 3

ergonomic not ergonomic

Figure 6: Two floor plans with lights and switches.

Let’s call a floor plan — together with n light fixture locations and n switch locations
— “ergonomic” if it’s possible to wire one switch to each fixture so that every fixture

100

is visible from the switch that controls it. A floor plan will be represented by a set of
m horizontal or vertical line segments in the plane (the walls), where the ith wall has
endpoints (xi, yi), (x

′
i, y
′
i). Each of the n switches and each of the n fixtures is given

by its coordinates in the plane. A fixture is visible from a switch if the line segment
joining them does not cross any of the walls.

Give an algorithm to decide if a given floor plan, in the above representation, is er-
gonomic. The running time should be polynomial in m and n. You may assume that
you have a subroutine with O(1) running time that takes two line segments as input
and decides whether or not they cross in the plane.

Solution. We build the following bipartite graph G = (V,E). V is partitioned
into sets X and Y , with a node xi ∈ X representing switch i, and a node yj ∈ Y
representing fixture j. (xi, yj) is an edge in E if and only if the line segment from xi to
yj does not intersect any of the m walls in the floor plan. Thus, whether (xi, yj) ∈ E
can be determined initially by m segment-intersection tests; so G can be built in time
O(n2m).

Now, we test in O(n3) time whether G has a perfect matching, and declare the floor
plan to be “ergonomic” if and only if G does have a perfect matching. Our answer is
always correct, since a perfect matching in G is a pairing of the n switches and the
n fixtures in such a way that each switch can see the fixture it is paired with, by the
definition of the edge set E; conversely, such a pairing of switches and fixtures defines
a perfect matching in G.

31. Some of your friends are interning at the small high-tech company WebExodus. A
running joke among the employees there is that the back room has less space devoted
to high-end servers than it does to empty boxes of computer equipment, piled up in
case something needs to be shipped back to the supplier for maintainence.

A few days ago, a large shipment of computer monitors arrived, each in its own large
box; and since there are many different kinds of monitors in the shipment, the boxes do
not all have the same dimensions. A bunch of people spent some time in the morning
trying to figure out how to store all these things, realizing of course that less space
would be taken up if some of the boxes could be nested inside others.

Suppose each box i is a rectangular parallelepiped with side lengths equal to (i1, i2, i3);
and suppose each side length is strictly between half a meter and one meter. Geomet-
rically, you know what it means for one box to nest inside another — it’s possible if
you can rotate the smaller so that it fits inside the larger in each dimension. Formally,
we can say that box i with dimensions (i1, i2, i3) nests inside box j with dimensions
(j1, j2, j3) if there is a permutation a, b, c of the dimensions {1, 2, 3} so that ia < j1,
and ib < j2, and ic < j3. Of course, nesting is recursive — if i nests in j, and j nests
in k, then by putting i inside j inside k, only box k is visible. We say that a nesting
arrangement for a set of n boxes is a sequence of operations in which a box i is put
inside another box j in which it nests; and if there were already boxes nested inside i,

101

then these end up inside j as well. (Also notice the following: since the side lengths of
i are more than half a meter each, and since the side lengths of j are less than a meter
each, box i will take up more than half of each dimension of j, and so after i is put
inside j, nothing else can be put inside j.) We say that a box k is visible in a nesting
arrangement if the sequence of operations does not result in its ever being put inside
another box.

So this is the problem faced by the people at WebExodus: Since only the visible boxes
are taking up any space, how should a nesting arrangement be chosen so as to minimize
the number of visible boxes?

Give a polynomial-time algorithm to solve this problem.

Example. Suppose there are three boxes with dimensions (.6, .6, .6), (.75, .75, .75),
and (.9, .7, .7). Then the first box can be put into either of the second or third boxes;
but in any nesting arrangement, both the second and third boxes will be visible. So
the minimum possible number of visible boxes is two, and one solution that achieves
this is to nest the first box inside the second.

Solution. This is a complete parallel to the airline crew scheduling problem in the
book. The boxes are like the flights, and where we previously encoded the idea that
one crew can perform flight i followed by flight j, we analogously encode the idea that
box i can be nested inside box j.

More precisely we reduce the given problem to a max flow problem where units of flow
correspond to sets of boxes nested inside one visible box. We construct the following
graph G:

• For each box i, G has two nodes ui and vi and an edge between them that
corresponds to this box. This edge (ui, vi) has a lower bound of 1 and a capacity
of 1. (Each box is exactly in one set of boxes nested one in another.)

• For each i and j so that box j nests inside box i, there is an edge (vi, uj). (One
can store box j inside i.)

• G also has a source node s (corresponding to the back room where boxes are
stored) and a sink node t (corresponding to nothing inside empty boxes).

• For each i, G has an edge (s, ui) with a lower bound of 0 and a capacity of 1.
(Any box can be visible.)

• For each j, G has an edge (vj, t) with a lower bound of 0 and a capacity of 1.
(Any box can be empty.)

We claim the following:

Fact 1 There is a nesting arrangement with k visible boxes if and only of there is a
feasible circulation in G with demand −k in the source node s and demand k in the
sink t.

102

Proof. First, suppose there is a nesting arrangement with k visible boxes. Each
sequence of nested boxes inside one visible box i1, i2, . . . , in defines a path from s to t:

(s, ui1 , vi1 , ui2 , vi2 , . . . , uin , vin , t)

Therefore we have k paths from s to t. The circulation corresponding to all these paths
satisfy all demands, capacity and lower bound.

Conversely, consider a feasible circulation in our network. Without lost of generality,
assume that this circulation has integer flow values.

There are exactly k edges going to t that carries one unit of flow. Consider one of such
edges (vi, t). We know that (ui, vi) has one unit of flow. Therefore, there is a unique
edge into ui that carries one unit of flow. If this edge is of the kind (vj, ui) then put
box i inside j and continue with box j. If this edge of the kind (s, ui), then put the
box i in the back room. This box became visible. Continuing in this way we pack all
boxes into k visible ones.

So we can answer the question whether there is a nesting arrangement with exactly k
visible boxes. Now to find the minimum possible number of visible boxes we answer
this question for k = 1, 2, 3, and so on, until we find a positive answer. The maximum
number of this iteration is n, therefore the algorithm is polynomial since we can find
a feasible circulation in polynomial time.

32. (a) Suppose you are given a flow network with integer capacities, together with a
maximum flow f that has been computed in the network. Now, the capacity of one of
the edges e out of the source is raised by one unit. Show how to compute a maximum
flow in the resulting network in time O(m + n), where m is the number of edges and
n is the number of nodes.

(b) You’re designing an interactive image segmentation tool that works as follows.
You start with the image segmentation set-up described in Section 6.8, with n pixels,
a set of neighboring pairs, and parameters {ai}, {bi}, and {pij}. We will make two
assumptions about this instance. First, we will suppose that each of the parameters
{ai}, {bi}, and {pij} is a non-negative integer between 0 and d, for some number d.
Second, we will suppose that the neighbor relation among the pixels has the property
that each pixel is a neighbor of at most four other pixels (so in the resulting graph,
there are at most four edges out of each node).

You first perform an initial segmentation (A0, B0) so as to maximize the quantity
q(A0, B0). Now, this might result in certain pixels being assigned to the background,
when the user knows that they ought to be in the foreground. So when presented with
the segmentation, the user has the option of mouse-clicking on a particular pixel v1,
thereby bringing it to the foreground. But the tool should not simply bring this pixel
into the foreground; rather, it should compute a segmentation (A1, B1) that maximizes
the quantity q(A1, B1) subject to the condition that v1 is in the foreground. (In practice,

103

this is useful for the following kind of operation: in segmenting a photo of a group of
people, perhaps someone is holding a bag that has been accidentally labeled as part of
the background. By clicking on a single pixel belonging to the bag, and re-computing
an optimal segmentation subject to the new condition, the whole bag will often become
part of the foreground.)

In fact, the system should allow the user to perform a sequence of such mouse-clicks
v1, v2, . . . , vt; and after mouse-click vi, the system should produce a segmentation
(Ai, Bi) that maximizes the quantity q(Ai, Bi) subject to the condition that all of
v1, v2, . . . , vi are in the foreground.

Give an algorithm that performs these operations so that the initial segmentation is
computed within a constant factor of the time for a single maximum flow, and then
the interaction with the user is handled in O(dn) time per mouse-click.

(Note: Part (a) is a useful primitive for doing this. Also, the symmetric operation of
forcing a pixel to belong to the background can be handled by analogous means, but you
do not have to work this out here.)

Solution. This part is easy. We just check whether it’s possible to augment once in
the residual graph.

Let G be an original network and G′ be a network where the capacity of edge e is
raised by 1. Let f be a maximum flow of G.

Fact 2a If there is a augment path in the residual graph G′f then the maximum flow
of G′ is f augmented by this path. Otherwise, the maximum flow of G′ still f .

Proof. It is clear that in a new network the value of any cut may be increased at
most by 1, because we increase the capacity of only one edge by 1. Therefore any
integer flow in G′ with the value grater than the value of f is a maximum flow.

If there is a path in the residual graph G′f , then there is an augment of f . The resulting
flow has a greater value than f has, therefore it is a maximum flow.

On the other hand, if there is no path in the residual graph G′f , then we know that f
is maximum flow.

Using BFS or DFS we can check whether there is a s− t path in G′f in time O(m+n).

(b) To make sure that a selected pixel v will be in the foreground we consider the
same network as in textbook, but increase the capacity on the edge (s, v) to 5d+1. Note
that this is greater than the total capacity of all edges outgoing from v (at most four
edges to neighbor pixels, plus the edge to t). So the minimum cut will now definitely
has v on the source side (otherwise we could move v to source side and decrease the
capacity of the cut).

104

Therefore the following algorithm works. Compute a maximum flow f and find a
minimum cut, as in the book. Then, for each pixel v selected by the user, we want to
raise the capacity on the edge (s, v) to 5d+1. To do so we increase the capacity of this
edge 5d+ 1− a times by 1 each time (where a is the old capacity). Each time we will
use algorithm of part (a) to compute a new maximum flow in O(m + n) time. Then
we compute a minimum cut in O(m) time.

The overall time per mouse-click is (5d + 1)O(m + n) + O(m) = O(d(m + n)). Since
each non-source node in our graph has at most 5 outgoing edges and s has n outgoing
edges, the total number of edges in the graph is m ≤ 5n + n = O(n). Therefore
O(d(m+m)) = O(dn).

33. We now consider a different variation on the image segmentation problem from Section
6.8. We will develop a solution to an image labeling problem, where the goal is to label
each pixel with a rough estimate of its distance from the camera (rather than the
simple foreground/background labeling used in the text). The possible labels for each
pixel will be 0, 1, 2, . . . ,M for some integer M .

LetG = (V,E) denote the graph whose nodes are pixels, and edges indicate neighboring
pairs of pixels. A labeling of the pixels is a partition of V into sets A0, A1, . . . , AM ,
where Ak is the set of pixels that is labeled with distance k for k = 0, . . . ,M . We
will seek a labeling of minimum cost; the cost will come from two types of terms.
By analogy with the foreground/background segmentation problem, we will have an
assignment cost: for each pixel i and label k, the cost ai,k is the cost of assigning label
k to pixel i. Next, if two neighboring pixels (i, j) ∈ E are assigned different labels,
there will be a separation cost. In the book, we use a separation penalty pij. In our
current problem, the separation cost will also depend on how far the two pixels are
separated; specifically, it will be proportional to the difference in value between their
two labels.

Thus, the overall cost q′ of a labeling is defined as follows:

q′(A0, . . . , AM) =
M∑
k=0

∑
i∈Ai

ai,k +
∑
k<`

∑
(i,j)∈E

i∈Ak,j∈A`

(`− k)pij.

The goal of this problem is to develop a polynomial-time algorithm that finds the
optimal labeling given the graph G and the penalty parameters ai,k and pij. The
algorithm will be based on constructing a flow network, and we will start you off on
designing the algorithm by providing a portion of the construction.

The flow network will have a source s and a sink t. In addition, for each pixel i ∈ V we
will have nodes vi,k in the flow network for k = 1, . . . ,M as shown in the accompanying
figure. (M = 5 in the example in the figure.)

For notational convenience, the nodes vi,0 and vi,M+1 will refer to s and t respectively,
for any choice of i ∈ V .

105

vi,3 vi,4 vi,5L L L L L L

a a a a a ai,1 i,2 i,3 i,4 i,5i,0

s
v vi,1 i,2

t

We now add edges (vi,k, vi,k+1) with capacity ai,k for k = 0, . . . ,M ; and edges (vi,k+1, vi,k)
in the opposite direction with very large capacity L. We will refer to this collection of
nodes and edges as the chain associated with pixel i.

Notice that if we make this very large capacity L large enough, then there will be no
minimum cut (A,B) so that an edge of capacity L leaves the set A. (How large do
we have to make it for this to happen?). Hence, for any minimum cut (A,B), and
each pixel i, there will be exactly one low-capacity edge in the chain associated with
i that leaves the set A. (You should check that if there were two such edges, then a
large-capacity edge would also have to leave the set A.)

Finally, here’s the question: Use the nodes and edges defined so far to complete the
construction of a flow network with the property that a minimum-cost labeling can be
efficiently computed from a minimum (s, t)-cut. You should prove that your construc-
tion has the desired property, and show to recover the minimum-cost labeling from the
cut.

Solution. First, consider a cut (A0, B0), where A0 is just {s}. Note, that there no
edges with capacity L going out s, therefore the capacity of the cut (A0, B0) does not
depend on L. Let L be greater than this capacity. Then any cut cutting an edge of
capacity L has capacity at least L. So such cut can not be a minimum cut, because it
has larger capacity than (A0, B0) cut.

Now consider a minimum cut (A,B). Let i be an arbitrary pixel. If vi,k ∈ A for some k
then vi,k−1 is also in A, since there is an edge (vi,k, vi,k−1) with capacity L and no edge
with capacity L is out of A. Let f(i) is the maximum number such that vi,f(i) ∈ A
(such number exists because vi,0 = s ∈ A). Then A contains all nodes vi,k where
k ≤ f(i), and A contains all nodes vi,k where k > f(i).

This number f(i) will represent the label of the pixel i (i.e. we put i in Ak when
f(i) = k). So any labeling of the pixels corresponds to a cut (A,B) where A =
{(vi,k | k ≤ label of i}. We have just proved that any minimum cut corresponds to
some labeling. Up to now the capacity of such cut is

M∑
k=0

ai,f(i) =
M∑
k=0

∑
i:f(i)=k

ai,k

which is equal to the first term of our cost function.

So the main issue remaining is to encode the separation costs. If pixels i and j are
neighbors, we join vi,k and vj,k, for each k, by two edges in both directions of capacity

106

pi,j. Consequently, (A,B) cuts the edges of the kind (vi,k, vj,k) when vi,k ∈ A and vj,k ∈
B, i.e., when k ≤ f(i) and k > f(j). For any pair of neighbors i and j if f(j) ≥ f(i)
then there are exactly f(j) − f(i) such k that f(i) ≤ k < f(j). Therefore there are
f(j)−f(i) edges out of A. The overall capacity of these edges is (f(j)−f(i))pi,j which
is exactly the desired separation cost.

So we have proved that the cost of any labeling is equal to capacity of the corresponding
cut. Hence, the minimum cost labeling corresponds to the minimum cut.

34. The goal of this problem is to suggest variants of the preflow-push algorithm that speed
up the practical running time without ruining its worst case complexity. Recall that
the algorithm maintains the invariant that h(v) ≤ h(w) + 1 for all edges (v, w) in the
residual graph of the current preflow. We proved that if f is a flow (not just a preflow)
with this invariant, then it is a maximum flow. Heights were monotone increasing and
the whole running time analysis depended on bounding the number of times nodes can
increase their heights. Practical experience shows that the algorithm is almost always
much faster than suggested by the worst case, and that the practical bottleneck of the
algorithm is relabeling nodes (and not the unsaturating pushes that lead to the worst
case in the theoretical analysis). The goal of the problems below is the decrease the
number of relabelings by increasing heights faster than one-by-one. Assume you have
a graph G with n nodes, m edges, capacities c, source s and sink t.

(a) The preflow-push algorithm, as described in the text, starts by setting the flow
equal to the capacity ce on all edges e leaving the source, setting the flow to 0 on all
other edges, setting h(s) = n, and setting h(v) = 0 for all other nodes v ∈ V . Give an
O(m) procedure that for initializing node heights that is better than what we had in
class. Your method should set the height of each node v be as high as possible given
the initial flow.

(b) In this part we will add a new step, called gap relabeling to preflow-push, that will
increase the labels of lots of nodes by more than one at a time. Consider a preflow f
and heights h satisfying the invariant. A gap in the heights is an integer 0 < h < n
so that no node has height exactly h. Assume h is a gap value, and let A be the set
of nodes v with heights n > h(v) > h. Gap relabeling is to change the height of all
nodes in A to n. Prove that the preflow/push algorithm with Gap relabeling is a valid
max-flow algorithm. Note that the only new thing that you need to prove is that gap
relabeling preserves the invariant above.

(c) In Section ?? we proved that h(v) ≤ 2n − 1 throughout the algorithm. Here we
will have a variant that has h(v) ≤ n throughout. The idea is that we ”freeze” all
nodes when they get to height n, i.e., nodes at hight n are no longer considered active,
and hence are not used for push and relabel. This way at the end of the algorithm we
have a preflow and height function that satisfies the invariant above, and so that all
excess is at height n. Let B be the set of nodes v so that there is a path from v to t

107

in the residual graph of the current preflow. Let A = V−B. Prove that at the end of
the algorithm (A,B) is a minimum capacity s− t cut.

(d) The algorithm in part (c) computes a minimum s − t cut, but fails to find a
maximum flow (as it ends with a preflow that has excesses). Give an algorithm that
takes the preflow f at the end of the algorithm of part (c) and converts it into a max
flow in at most O(mn) time. Hint: consider nodes with excess and try to send the
excess back to s using only edges that the flow came on.

108

